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*k
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ABSTRACT
Some recent results on the detection and estimation of signals
in the presence of noise are discussed. An exact confidence lower
bound is obtained for the discriminatory power of an estimated linear
discriminant function for signal detection. Information theoretic
criteria are suggested for the estimation of number of signals. A
new method is prbposed for determining the number of signals and esti-

mating them in exponential signal models.
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N 1. INTRODUCTION
{

‘
N Some of the problems of signal detection considered by electrical

\h

- engineers can be described in terms of a linear model

> Y=8+n (1.1)

L~

j where £ is an n-vector signal, n is an n-vector noise variable perturb-

>

ing the signal during transmission and Y is the received message. The

N general problem associated with the model (1.1) is that of detecting

1. the presence of a signal in a received message and estimating it when

b resent., Different types of problems arise depending on the nature of

f P yp P P 8

- £ and n.

N

. We consider two types of problems, one where § is considered as a

,

e specified vector or a specified function of unknown parameters, and

) another where § is considered as a stochastic vector distributed in-

¥ dependently of the noise vector n,

2

TJ The following notations are used. A' denotes the transpose of a

N matrix A when its elements are real and A* the conjugate transpose of

. A when its elements are complex.

‘ 1) x - Np(u,Z), i.e., a real p-vector X has a p-variate real normal

N o
: distribution with the probability density function (p.d.f.) e :
, -p/2| 1Y -1 A’L -
g (2m) PO ] Texp Flx-u) 't (x-u) 1. 1.3y 0 Y

S

o ~ ' .-:
< (11) X - Np(u,Z), i.e., a complex vector X has a p-variate complex nor- St B
» mal distribution with the p.d.f. e
: W

() PIE] Pexp blx-u)r T (xu) 1, 1.6y

Ty Y
'
[
‘
[
N SEH .,‘.'.,

}

A
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) (iii) S - Wp(f,t), i.e., a real p x p positive definite matrix S has the
o Wishart distribution on f degrees of freedom with the p.d.f.
Paly R
- -p£/2 -1y ~£/2 -p- -
o 27P [Fp(f/Z)] |z £/ ISl(f P 1)/2exp(—%tr£ 1S) (1.5)
::\ where
h\.-\.:
- p -
rGa) = wPeTD/ g (o L1,y
‘,:.: P =1
%t (iv) S ~ WP(f,E), i.e., a complex p x p positive definite matrix S has
[ the complex Wishart distribution with the p.d.f.
T @17z T Pexp(oeer ) (1.6)
o where
I . .
P - -
I (a) = ePP-D/2 0 (o s4y,
o) i =
-~ 2. PROBLEMS INVOLVING A FIXED SIGNAL
._ 2.1 Test for a specified signal
'::.
:\", Consider the model
2
v,
1% X=E+n (2.1.1)
where £ is a fixed vector and n =~ Np(O,a—IZ) with a known scalar a and an
.'j:;_ unknown covariance matrix I, Let S be a pxp positive definite matrix variable
N such that S =~ wp(f,Z). We have independent observations on X and S, on the
‘»
SNAY
:-,\ basis of which we wish to test the hypothesis
2
A

>
L ]
r .
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H, ¢: £ = 0 wversus Hl : £ = 8§ (specified), (2,1,2)

Rejection of H_  at a chosen level of significance would indicate that the

0
received message X contains the signal § and is not pure noise,
It may be noted that when p = 1, the appropriate test of Ho is the one-

sided t test

a% X

t = —————g—~> c if § > 0 (or <c 1if 8<0) (2.1.3)
(s/f)

on f degrees of freedom, When p > 1, one generally uses Hotelling's

72 = a—“?‘“—”— x's™1x (2.1.4)

which is distributed as F on p and f-p+l degrees of freedom. The test (2.1.4),
however, does not involve the specified §. A more powerful test than (2.1.4)
is recently suggested by Khatri and Rao (1985b) based on the following con-
siderations.

Let C be a px(p-1) matrix of rank p-1 such that 6'C = 0 and consider
the transformation

Y §' 8!
Y = = X, V= S (8:0). (2.1.5)

Then

0 -
Np((o)‘a 12*) under HO

§'é -1
Np(( 0 ) » @ L) under H1

5'
V - Wp(f,Z*) y L, -(C ) £(8:C) (2.1.6)
\J
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{H and the problem (2.1.2) reduces to testing
:::-I
1Y
QYA H = H - '
:::):. Ho E(Yl) 0 versus Hl E(Yl) §'6 > 0
\_‘j given E(Yz) = Q, (2.1.7)
._::\

::,{‘. Such a problem involving a conditional test was considered in Rao (1946).
i

:.-‘ The appropriate test is t > t, where

- . _

X at(f-p+1) 6's ™ x

t= -1 -1 2% (2.1.8)
X [(1+aX's "X)8'S "§-a(d's "X)7]
=

._ has t distribution on (f-p+1) degrees of freedom and ts is the upper tail
_, a% point of the t distribution.

I 4

:::-:’- In testing (2.1.7), we used the condition E(Yz) = 0, But in practice
el
{ it may be necessary to check.whether this holds, For this, we use Hotelling's
-
- 2 a(f-pt2) -1, (s's™in? ,
T = o} (X's X——-——_——l'—) (2.1.9)
Ef;' P §*'s™ s
i:-;f which has F distribution on (p-1) and (f-p+2) degrees of freedom.

:’_"-:: The tests (2.1.8) and (2.1.9) can be extended to the case where n

.‘“ and S have complex normal and Wishart distributions respectively. For

A\'.N- ’

\ example, the test for HO:u=0 versus leu=6 is t > Fa where

o (2(£-p+1) ] T6*s™ X :
LA t = real part of - ] ] 1 15 (1.2.10)
S [(a "4X*S™ X)§*S §-8*S” "XX*S 6]
o
::':-\. has t distribution on 2(f-p+l) degrees of freedom. Further the hypothesis
Lo &
o~ that E(Y,) = 0 is tested by Hotelling's
2

WU
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-1 -1

- - * *

: 12 - 2D (aTly s XS 9 (2.1.11)
p- §*%S 6

o which has F distribution on 2(p-1) and 2(f-p+2) degrees of freedom.

Y

AR, .

2.2 Discrimination between noise and a specified signal

2
~ .
j:} In Section 2,1, we considered the problem of testing for pure noise
-:: :
P against a specified signal on the basis of an observed message X and an in-
W dependent estimate f-ls of L. The interpretation of such a test at a chosen

(L
RO
LR W

P

level of significance is not simple, specially when the same estimate f_IS

NN
.;Qg of I is used repeatedly to test for signals in a number of incoming future
£=§% messages, In order to provide a satisfactory solution, we consider the prob-
£E~ lem of signal detection as one of discrimination between alternative populations
N
Efi NP(O,Z), (or ﬁp(o,z)), and Np(d,Z), (ot ﬁp(s,z)), when I is unknown but an
|

estimate f_IS of I is available. 1In such a case, the estimated linear

discriminant function (LDF) is propeortional to

1

y = 8's7IX, (or s*s”lx), (2.2.1)

In the sequel we follow the practice of giving the results for the real case
first and then for the complex case within brackets as in (2,2.1)]. The
discriminatory power of (2.,2.1) when applied to future observations is a

monotone function of the discrimination index (DI)

2
o5, 5y = LEGIS, £=8) - E(ys,E=00]7

V(yls)
-1 -1
5! ~ % 8
‘ =25 3 . » (or o(S,Z)=~—£—§—————-). (2.2.2)
il 1 1 1..~1

7S 6 s*s” IS '8
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If ¢ is known, the true LDF is 6'2'1x, (or a*z'lx), and the optimal DI 1is

1

0(L,5) = 't L6, (or p(E,r)=s%r"16) ( 2.2.3)

which is greater than or equal to (2,2,2) by the Cauchy-Schwartz inequality,
so that there is, in general, loss of information in using an estimated £,
The expression (2,2,2) involves the unknown covariance matrix I, and there-
fore, the realized discriminatory power by using a particular estimate of
I in classifying future observations remains unknown. We raise the question
as to whether an estimate of (2.2.2) can be obtained in terms of known (observed)
values to provide some idea of the performance of the estimated LDF. One
such is the plug-in estimate p(S,f-ls), for ;(S,f_ls)), but it is known to be
highly biased estimator of (2.2.2). In a recent paper, Khatri and Rao (1985a)
provided a satisfactory solution, which is as follows.
It is shown that in the real case
(5's” 15?2

B = and G = P>
sz tey (srs ! -

- (2.2.4)
17 d) §'s™ s

are independently distributed with p.d.f. (probability density function)

of B as

rtd
2 b(f—p)/Z(l_b)(p-3)/2 (2.2.5)
rd=22, st
and that of G as
1 o"8/2 J(f-pr) /2 (2.2.6)
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In the complex case, defining B and G with &' replaced by §* in (2.2.4),

it is shown that B and G are independently distributed with the p.d.f. of

B as 1

el SN S e e S B S

I'(f+1) C(f-ptl) . T p-2 {

T(Ep) To-D ° (1-0) (2.2.7) ]

: a

and that of G as L
|

1 -g ~(f-p) )

T(Ep+t) ¢ 8 . (2.2.8) }

The distribution (2.2.7) was earlier obtained by Reed, Mallet and Brennan
(1974), The distributions (2.2.3) - (2.2.8) are independent of the unknown
parameters which enables us to draw inferences on 0(S,I), (or ;(S,Z)), through
the pivotal quantities g and E, (or B and G) as discussed below.

1. Using the expressions for the moments of the beta distribution

(Rao (1973), p. 168)

oy _ f-p+2

X E(B or B) = ]
o
;ﬁ we have
e
"N
® Elo(5,2)), (ot p(5,2)] = S22 (515715, (or %1700 1. (2.2.9)
o
o If the average efficiency is to be maintained at about half the optimal
AR
‘Qg efficiency, then from (2.2.9) we have

-g—;—_%z-;-;-or £ = 2p (2.2.10)

for both real and complex cases, i.e., the degrees of freedom on which I

P

i3 estimated should be at least twice the number of components of the signal.
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This result for the complex case is mentioned in Reed, Mallet and Zren:..:
(1974). Similarly we can equate the ratio in (2.2.9) to anv desired rat:
other than (1/2) and find the degrees of freedom f needed for the estiz.
of .

2. Perhaps, a more satisfactory way of using the distributions (2.l..
and (2.2.7) is as follows. Let ba’ (or Ba)’ be the lower a7 point cof the

distribution (2.2.4), (or (2.2,7)). Then we can make the confidence state-

ment that

1

p(S,5) > b 6'5716, (or p(s,5) > b 3% o) (2.2.11

with a confidence coefficient of (l-a)Z.
3. The results (2.2,10) and (2,2.11) still involve the unknown quantit~
L. We raise the guestion, whether the actual magnitude of p(S,Z) for given
S can be as;essed through known values, Using the joint distribution of
B and G as in (2.2.5) and (2.2.6) it is shown in Khatri and Rao (1985a) that

E[p(S,Z)-gDz]2 attaing its minimum at g = (£~-p+2) (f-p-1)/f(f+1) so that

p(s,3) = B2 (Eop=d) ;2
£(£+1)

(2.2.12)

which does not involve unknown parameters, in a close approximation to

p{(S,L). Similarly

~

S(s,1) = (Emp¥D) (f=p-1) 2

f(f+1)

(2.2.13)

is a close approximaticn to p(S,I).

4, We can also obtain the exact lower confidence bound to 0(S,Z), which

provides a satisfactory answer to the problem raised. We define the random

variable
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10
7 = 1 BG = fo(s,0) (or Z = fo(S,2) ) ( 2.2.14)
2 2 D2 D2

which has the confluent hypergeometric distribution with the p.d.f.

e 2 zm”1 I' (a+b)
T'(m) T (a)

¥Y(b,m-a+l;z) (2.2.15)

where m = (f-p+1)/2, a = (f-p+2)/2, b = (p-1)/2, (or m = f-p+l, a = f-p+2,

b = p-1), and

¥(b,c3z) = I‘_th fo o1 (1+c)°“b’1 exp(-zt)dt, (2.2.16)

The percentage points of this distribution at various levels are tabulated

in Khatri, Rao and Sun (1986). If zu(or Za) is the lower a’ point of this

distribution, then

2z z
a

—— D% (ot 6(5,8) 2 — D) (2.2.17)

p(S,I) >

provides the lower confidence bound to p(S,E), (or ;(S,I)),with a confidence
coefficient of (l-a)%.

Several approximations to the distribution (2.2.15) are also obtained
'A Khatri, Rao and Sun (1986) when f is large compared to p, from which

fairly accurate percentage points can be easily obtained.

3. PROBLEMS INVOLVING A RANDOM SIGNAL

Following the recent papers by Wax and Kailath (1984) and Bai, Krishnaiah

and Zhao (1986), let us consider the model

X(t) = A s(t) + n(t), t = cl,...,tn, (3.1)

AL A AN oA ST N e e T g
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where X(t) is a p-vector message received at time t, s(t) is a gq-vector random
signal, n(t) is a p-vector noise component and A is an unknown pxq matrix
with elements independent of t. The following assumptions are made regard-
ing the model (3.1).
(i) s(ti), i=1,...on, are i.i.d. with the common distribution
Nq(O,?), (or &q(O,Y)). q < p.
(1i) n(ti), i = 1,iee5n, are 1.,i.d. with the common distribution
Np(O,GZEI), (or N (0,571 ))).

(iii) s(ti) and n(t, ) are independent for all i and j.

3

Under these assumptions

2 - N 2
X(t) NP(O,Z2 = T4g ZI), (or NP(O,E2 = T+0 21))

where
I = AYA', (or AYA¥*) (3.2)

is of rank q < p. Further, if

n n
= ' * .
s, zx(ti)x(ti) , (or }X(ti’x(‘i’ ) (3.3)
then
- - . 3.4
S, Wp(n.Zz), (or s, Wp(n,iz)) (3.4)
:J We consider the problem of testing
% HO : Rank I = q<p versus rank I' is arbitrary (3.5
" s
2
#ﬁd and also of estimating q, the rank of T,

TG e PR T e e e .
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3.1 Case l : 21 = T

In this case 22 = F+021, and it is well-known (see Anderson (1963)) that

the likelihood ratio criterion for testing (3.5) is

£ . ..l)S
L = gtl’ " p (3.1.1)

T (@t )] (e 17O

where ﬁlz,..zﬂp are the eigen values of n_IS2 and s = n/2 in the real case

and s = n in the complex case, In large samples, i.e., as n *>

-2 log L - x2([(p=q) (p=q+1) /2]-1), (or x> ([(p-0)2-11).  (3.1.2)

As for the estimation of q, Zhao, Krishnaiah and Bai (1986a) suggested
a new information theoretic criterion which is more general than those proposed
by Akaike (1972i, Schwartz (1978) and Rissanen (1978). Their method consists

in choosing as an estimate of q the number q such that
I(q,Cn) = min{I(O,Cn),...,I(p-l,Cn)} (3.1.3)
where
I(k,Cn) = -~ log L+ Cn v(k,p)
v(k,p) = 1 + [k(2p-k+1)/2],(or 1 + k(2p-k))

which 1s the number of free parameters when rank I' = k, and Cn are such that

1im (Cn/n) = 0,
e

1lim (Cn/loglogn) = o, (3.1.4)
) wad
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Zhao, Krishnaiah and Bai (1986a) proved that q determined as in (3.1.3) is a

-

::S strongly consistent estimate of q.
.‘I:'n

-

o 2

D~ 3.2 Case 2 : L, =1, o' =1

1

J

2,
2

.{}- In this case, the likelihood ratio criterion for testing the hypothesis
J'\.:

) (3.5) is derived by Zhao, Krishnaiah and Bai (1986) as

o

-('.'

2 _ log Lq = g 2 (log Zi + l—li) (3.2.1)
'1_; i=1+min(t,q)

o

S where s = n/2 in the real case and s=n in the complex case and T is the

@ number of eigen values Zi which are greater than unity. The large sample
éjij distribution of -2 1ogLq is no longer xz. But as suggested by Rao (1983)
{f{ in a slightly different situation the test of the hypothesis in this case

' » can be carried out in two stages, first as in Case 3.1 taking 02 as unknown,
:Fﬂ and then examining whether 02=1. However, the criterion of Zhao, Krishnaiah
O

b,
fui- and Bai can be used with (3.2,1) for the estimation of q, i.e., by minimizing
4 ';:

::“ - log Lk + Cn v(k,p) (3.2.2)
N
P
fot where C_ is as in (3.1.4) and

[N n

0

O v(k,p) = [k(2p-k+1)/2], (or k(2p-k)). (3.2.3)
i

T

'{E 3.3 Case 3 : I, arbitrary and o? unknown

A

:{: In addition to S2 defined in (3.3), we suppose that another independent
L
::ff variable S, is observable and has the distribution

1

-

- »
.
PR

S1 - wp(f,zl), (or S1 - wp(f,Z)). (3.3.1)
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i Let f.ll...if_p be the roots of the equation |n-2-182— f—lsl} = 0. The likelihood

"t ratio criterion for the hypothesis (3.5) 1is derived by Rao (1983) in the form
=2
e p nzl (o npm

) 1
210qu- s log T [(—=F—)

—_— —— (3.3.2)
1=q+1 2 2 2 22
i ag

o where s = 1 in the real case and s = 2 in the complex case, and 02 is the

root of the equation

o~ (p-@)n, Py
:}V f+n

= —_— (3.3.3)
2 i=q+l nzmi-f-fc

:; . As n2 and f-«, the statistic (3.3.2) is distributed as
-

' ' 2, (p=q) (p=q+t 2 2
’ xR emt) gy or PG - 1)) (3.3.8)
For estimating q, the method of Zhao, Krishnaiah and Bai is to minimize

':) - log Lk + Cn v(k,p) (3.3.5)

,
(] :‘
A

el
0‘ *

AR

where Cn is as in (3.1.4) and

A A

@
ba

- )
458 v(k,p) = XKD 4y (or k(2p-l) + D), ’3.3.6)
' P : d 2 1
o 334 Case 4 : 21 is arbitrary and o =
>, In this case the likelihood ratio criterion is derived by Zhao, Krishnaiah

‘\-,: and Bai (1986b) as

2
- 2 log Lq = 3 log n [(-n—-;_f— Zi ] (3.4,1)

i=l+min(q,t) "2
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i where s = 1 for the real case and s = 2 for the complex case, and t is the number

P \-: ;
?:; of Zi which are greater than unity. The statistic does not have an asymptotic |
e

o 2 . ‘
\ 3 X distribution but is useful in the estimation of q. As in other cases

S,

|

) we choose q to minimize !
EgY

25; - log Lk + Cn v(k,p) (3.4.2)

e

Rt

. where Cn is as in (3,1.4) and
o3 k(2p=k+1

—k+
o vik,p) = SERIHD o (2p-k)) (3.4.3)

AN

>

LD

o The estimates of q obtained in (3.2.2), (3.3.5) and (3.4.2) are strongly

-,

o consistent as n, and f», Detailed proofs are given in two papers by Zhao,

lfﬁ Krishnaiah and Bai (1986a,1986b).
.

N 4. EXPONENTIAL SIGNAL MODELS

. Let Y. = E_ +n t=1,...,n, be observations taken at equal inter-

D) t t’
r:: vals of time on signals corrupted by noise. The signal Et is considered
’;:L to be of the form
.P -l
o
P S 1 t smt
i E = a.e + ...+ a e (4.1)
e t 1 m
W
= where a’' = (a,,...,a ) and 8' = (s,,...,s ) are unknown complex vector
L 1’ m 1 m
“{} parameters. Often the value of m, the number of signals (exponential terms
L
P in (4.1)), is itself unknown and has to be considered as an essential
s
:}}} parameter under estimation. The noise components are taken to be indepen-
et . . . 2
‘f;j dently distributed with mean zero and common variance -~ . The problem has
o a long history starting with the pioneering work of Prony (1795) two hun-
o dred years ago. In a series of papers Tufts and Kumaresan (see Kumaresan
s
-
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(1982), Tufts and Kumaresan (1982) and Kumaresan and Tufts (1982) and the

numerous references therein) suggested some new approaches to the problem

based on Prony's parametrization of the signal process described below.
Prony (1795) observed that ii as defined in (4.1) satisfy the re-

currence relations

£ £ + ... +g¢t&, =0, i=l,...,n-m-1, (4.2)

i+m+1 + 8l i+m m- 1

where g' = (gm,...,gl,l) is a function of s, which may be regarded as an
alternative parameter to s. The equations (4.2) lead to the observational

equations
-y =gy + gy i=1....,n-m-1 4.3
i+m+l 17i+m R i ’ i ¢ )

which can be written in the matrix form
GY = 0, with Y' = (yl,...,yn) (4.4)

~hoosing the (n-m-1) x n matrix G appropriately with each row containing
the row vector g' and a number of zeros, the position of g' being shifted
by one element when we go from one row to the next row, Much of the pre-
vious work is centered on the equations (4.3, 4.4) and the estimatioun of

g by minimizing
*x % * %
Y GGY or Y G GY/g'g (4.5)

fixing an appropriate value for m. Once g is estimated, exP(si) are

obtained as the roots of the polynomial equation

-1 m
0=1+ 8,2 *o...+ 82 = 1 -r.r

c]
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v and a is estimated by minimizing

S -

&

A *

(Y-xa) (Y-xa) (4.7)
-.:r

\ ) taking

"-’: - -
) exp(sl) exp(sm)
o A

' X =

'f : .. - R

’ - (4.8)

exp(sln) exp(smn)

-',; as fixed. Tufts and Kumaresan in the papers cited above make some re-
s

‘-:: finements by starting with a larger value, say 2 > m, and use the extra
° terms to reduce the noise part of the model. However, it is not clear
' whether minimizing (4.5) ignoring the correlations between the components
AR

\‘_\

e of GY lead to consistent estimators of the unknown parameters. It may be
Y
. *
. noted that the covariance matrix of GY as defined in (4.4) is GZGG , in
. which case the appropriate quadratic form to be minimized is

n.\'-

S * % -1

(¢ Y G (GG*) "GY (4.9)

N

B
:.',- and not (4.4), although the minimiza*ion problem associated with (4.9) is
.r:'.

;._- far more complicated.

.; It is shown (see Smyth (1985) and references therein) that the
‘._-:: estimates of a and s obtained from (4.6) and (4.7) using the g estimated
~ . . . . . .
v from (4.9) are, indeed, maximum likelihood estimates, i.e., those obtained
R

’

\ »

'; by minimizing

.-

T n s,t st

E ly, - a,e - ... -ae | (4.10)
h._.' t 1 m i

'-..Q t=1

b2

> with respect to a; and sj, under the assumption that the error terms are
"

e normally distributed. We can also look upon the estimates of ai and si
R,

Y

3%

~.
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X

[ obtained by minimizing (4.10) as non-linear least squares estimates without
~on

N any distributional assumptions. Smyth (1985) has developed an efficient
L

algorithm for obtaining g which minimizes (4.9), and then estimating s and

\—]i a through the steps in (4.6) and (4.7), which solves the non-linear least
}f:f squares problem (4.10) for given m.

FRE)

::}: The choice of m can be made by a suitable information theoretic
e

' : model selection criterion such as the one used in the previous section.
'fffi If the minimum value of (4.10) is denoted by Rm, then under the assump-
::}:. tion of normality of Nes the error components, the information theoretic
;'; criterion takes the form

'\'j::’

NN n log R+ C_(4m) (4.11)
R m n

E) ._ -

R

v z where Cn are chosen to satisfy the conditions (3.1.4). The AIC criterion

(Akaike (1972)) corresponds to the choice Cn = 1, which may be sufficient

to provide a fairly accurate estimate of m.

However, a more relevant and satisfactory method in finite samples

R is provided by the cross validation (CV) approach, although the computa- |
_if& tions may be extremely heavy. (See for instance papers by Rao (1984) and

-355 Rao and Boudreau (1985) for such an approach in a prediction problem.) !
,;%. In the CV method we leave one of the values, say Yo but replace |
:1 it »y a variable Yi' For any choices of Yi and m, using Smyth's algorithm, j
:;¥§: we compute

n slt s t 2
R(Yi,m) = min fyt - ae T (4.12) i
a,s t=1 m ‘
|
|
. i
> where a' = (al,...,am) and s' = (31,...,sm). Then for given m, by a ‘

. suitable computer program, we find Yim such that
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N = in .
2 R(yim,m) ﬁ; R(Yi’m) (4.13)
s i
-.‘_’
--'l
?' which provides y. as an estimate of Y, for given m. Then comparing
e im 1
} ? y.  with the observed y.,, the cross validation error (CVE) is obtained as
! .::‘_ im 1
o n.
oy R, (m) = L (yi-yim) , (4.14)
) - 121
~
{:i' and finally m is chosen as that value for which R, (m) is a minimum.
‘:} As observed earlier, the computations involved in the above
i{- procedure are extremely heavy. However, simplication may be effected
-.j} in some ways.
}i? 1. If n is large, we may choose every alternative or every third
S
‘ w value among the components of (yl,...,yn) for cross validation. This
) :
iﬂf cuts down on the number of terms in (4.14) and reduces the computing
:}i time considerably.
! -.'_- "
Ci; 2. It may be noted that Yig €30 be computed by an alternative
) :\ method as
%:; - m . sji
N e 4.15
N Yin = L3 (4.15)
j=1
d)
3{: where a,, s,, j=1,...,m, are the values minimizing the expression,
e >
l.’b
N i-1 m s .t n moos.t o,
o~ - t
oy L iyt - .a.,e J f + . lyt - ja.e J L (4.16)
; t=1 1 t=1+1 1
.'
J‘,:-’
’y
v Due to the absence of the term yy in (4.16), one cannot take full ad-
. -
Oy vantage of Prony's reparametrization. But if the optimum values aj
. and sj can be found directly through some other algorithm, then Yim
- A
D F’
SN
- can be obtained as in (4.15).
o2
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3. We defined R(Yi,m) as the minimum of the expression on the

¥
~"
l. ¢ P s

T F

P A

right hand side of (4.12). For purposes of estimating m, one could use

an approximation |

.
SARARS

R(Y,,m) (4.17)
1

lz;l

2L EL AL

‘.)'n h R

LA A
(a4

»

. where a; and sj are estimates obtained by methods such as those suggested
! by Tufts and Kumaresan.
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